
VoteXX: A Solution to Improper Influence in
Voter-Verifiable Elections

Abstract. We solve a long-standing challenge to the integrity of votes
cast without the supervision of a voting booth: “improper influence,”
which typically refers to any combination of vote buying and voter co-
ercion. Our approach allows each voter, or their trusted agents (which
we call “hedgehogs”), to “nullify” (effectively cancel) their vote in a way
that is unstoppable, irrevocable, and forever unattributable to the voter.
In particular, our approach enhances security of online, remote, public-
sector elections, for which there is a growing need and the threat of
improper influence is most acute.

We introduce the new approach, give detailed cryptographic pro-
tocols, show how it can be applied to several voting settings, and de-
scribe our implementation. The protocols compose a full voting system,
which we call VoteXX, including registration, voting, nullification, and
tallying—using an anonymous communication system for registration,
vote casting, and other communication in the system. We demonstrate
how the technique can be applied to known systems, including where
ballots can be mailed to voters and voters use codes on the ballot to cast
their votes online. In comparison with previous proposals, our system
makes fewer assumptions and protects against a strong adversary who
learns all of the voter’s keys.

In VoteXX, each voter has two public-private key pairs. With-
out revealing their private keys, each voter registers their public keys
with the election authority. Each voter may share their keys with one or
more hedgehogs. During nullification, the voter, or one or more of their
hedgehogs, can interact through the anonymous communication system
to nullify a vote by proving knowledge of one of the voter’s private keys
via a zero-knowledge proof without revealing the private key. We de-
scribe a fully decentralizable implementation of VoteXX, including its
public bulletin board, which could be implemented on a blockchain.

Keywords: anonymous communication system · coercion resistance · decen-
tralized election authority · election security · hedgehog · high-integrity voting
system · improper influence · Internet voting · mixnet · mix network · nullification
· online voting · remote voting · voter-verifiable elections · VoteXX.

1 Introduction

For over 150 years, the voting booth helped prevent voters from being bribed and
coerced. The booth, however, is becoming untenable as information technology
provides the means for people to vote more frequently and conveniently without
booths, including using combinations of mailed paper forms and online inter-
actions. Moreover, technology facilitates vote buying and voter coercion with

2

electronic payments, live video streaming from voter phones, and various types
of online threats.

We present a solution to the problem of improper influence in voting without
booths that enables any voter to “nullify” (effectively cancel) their vote in a way
that is unstoppable, irrevocable, and forever unattributable to the voter. Our
approach allows each voter to recruit one or more trusted agents, which we call
“hedgehogs.” The voter, or their hedgehog(s), can nullify the vote by proving
knowledge of the voter’s secret key using a zero-knowledge proof without reveal-
ing the secret key. Hedgehogs can be recruited before or during the election, from
the voter’s acquaintances or using a service selected on reputation. Hedgehogs
can prove to the voter that they perform their services correctly.

Our approach differs from previous approaches (see Sect. 2)—e.g., revoting,
fake credentials, and decoy ballots—by leveraging the realistic assumption of
an untappable channel between the voter and their hedgehog(s). For instance,
our system does not have to make any of the following strong assumptions,
which can be readily violated by realistic adversaries: an untappable registration
channel, a final time when the voter can vote securely, or that voters are willing
to help discourage vote buying by selling decoy ballots. We protect against what
we believe to be the strongest possible adversarial model (apart from coercers
blocking registration or voting), in which adversaries can learn all voter secrets
and observe all voter interactions with the system (excluding interactions with
the hedgehogs).

Election system designers face many other challenges: outcome integrity, bal-
lot privacy, usability, accessibility, voter authentication, voting method (e.g.,
plurality, range voting), definitiveness, turnout, public verifiability, scalability,
compatibility with standard data formats, unstoppability, cost, and protection
against malware.

Three daunting challenges make Internet voting difficult: (1) The lack of a se-
cure physical voting precinct facilitates improper influence, including vote selling
and coercion. (2) Malware on the voter’s device (e.g., phone) might undetectably
modify votes and spy on voters. (3) Determined adversaries might try to launch
an online attack, including causing outages. Of these challenges, the most elusive
has been mitigating improper influence.

In this paper, we present a new solution to improper influence, which many
people consider to be the most acute challenge for online voting. Along the way,
the decentralized architecture and design of our VoteXX system enhances ap-
proaches to other challenges, including unstoppability and protection against
malware. In addition, we maintain state-of-the-art protection for outcome in-
tegrity, public verifiability, ballot privacy, and scalability.

Our primary contributions are: (1) We introduce the new notions of nullifica-
tion and hedgehogs, and present a new solution to improper influence based on
them. (2) We give cryptographic protocols realizing nullification, and show how
it can be applied to several voting settings, including vote-by-mail and online.
(3) We present a new fully-decentralized scalable voting system, VoteXX, includ-
ing registration, voting, nullification, and tallying. (4) We describe our imple-

3

mentation of VoteXX, which uses an anonymous communication system (ACS)
for registration, vote casting, and other communication. In addition, while other
systems complicate registration and vote casting, our approach allows simple
registration and vote casting by keeping nullification separate.

In the rest of this paper, we compare our approach with those of previous
work, detail our adversarial model, give our problem specification, show the
VoteXX architecture, define the VoteXX cryptographic protocols, describe voter
interfaces for several settings including vote-by-mail and online, mention possi-
ble extensions to VoteXX, sketch the VoteXX implementation and discuss its
performance, and explain the significance of our work. Throughout, we use the
terms “coercion” and “improper influence” synonymously.

2 Comparison to Previous Work

Coercion resistance guarantees that each voter may vote freely. Informally, a
voting system is coercion resistant if and only if no voter can prove to any co-
ercer that the voter cast a counted ballot according to the coercer’s instructions.
Smyth [30] surveys four definitions of coercion resistance and finds that “coer-
cion resistance has not been adequately formalized.” Three of the definitions are
too weak, and the general definition by Küsters [22] is complex and too strong.
Similarly, there remains some debate on the definition of receipt freeness [11].

Table 1 compares our solution to previous proposed mechanisms. Previ-
ous work often makes strong assumptions: the voter knows an honest Elec-
tion Authority (EA) official [8]; the voter needs a special device to evade co-
ercion [2,3,8,19]; the voter needs to perform mental arithmetic to evade coer-
cion [34]; the voter needs to generate a fake password to evade coercion [7,12];
the voter must complete registration before being coerced [19]; the election will
not close before the voter can cast a ballot after coercion [24,31,33]; and the prob-
ability of successful coercion is lowered by flooding voters with decoy ballots [5].
VoteXX makes none of these assumptions.

We do assume the voter can use an untappable channel, as all coercion-
resistant system must—if an adversary can always influence the voter, they are
indistinguishable from the voter [16]. Some systems establish windows for this
channel, such as during registration, or after coercion occurs. VoteXX is as flex-
ible as it could be. The channel is used once or twice between the voter and
each hedgehog (who can be any person in the world): first to induct the hedge-
hog (any time before the end of the election), and possibly second to signal the
hedgehog (after coercion and before the end of the election).

VoteXX guarantees that the voter is able to nullify their coerced vote. Unlike
some systems, in VoteXX, the voter cannot change their coerced ballot selection.
Since an adversary could always prevent a voter from voting, VoteXX achieves
an optimal solution. VoteXX can be used as an overlay, providing an additional
coercion-resistant mechanism to others already in place. Thus, VoteXX can sup-
port re-voting (as outlined in our protocol description); if a voter is unable to
re-vote (due to coercion at the end of the election), nullification is a failsafe.

4

Table 1. Strategies for resisting improper influence in end-to-end (E2E) verifiable
elections. All properties are with respect to coercion-resistance. Properties are fully
present (), partially present (), or not present (). Full explanation in full version of
paper. Decoy ballots act indirectly against influence and receive .

Type Example To
ler

at
es

dis
ho

ne
st

EA

No sp
ec
ial

de
vic

e req
uir

ed

Lo
w

co
gn

iti
ve

bu
rd

en

To
ler

at
es

co
erc

ion
at

an
y tim

e

Can
ful

ly
ov

err
ide

co
erc

ion

In
ex

pe
ns

ive

Baseline (coercible) Helios (2008) [1]

Fake credentials JCJ (2005) [19]

Masked ballots WeBu09 (2009) [34]

Panic passwords Selections (2011) [7]

Digital decoy ballots RS-Voting (2012) [5]

Re-voting VoteAgain (2020) [24]

Hedgehogs This work (2022)

3 System Overview

In VoteXX, each voter has a public-private key pair for “YES” votes, and an-
other such pair for “NO” votes. Without revealing their private keys, each voter
registers their public keys with the EA. Each voter may share their keys with
one or more hedgehogs. During nullification, the voter, or one or more of their
hedgehogs, can interact with the ACS to nullify a vote by proving knowledge
of one of the voter’s private keys via a zero-knowledge proof (ZKP) without re-
vealing the private key. We describe a fully decentralizable implementation of
VoteXX, including its public bulletin board (BB), which could be implemented
on a blockchain.

3.1 Adversarial Model
The adversary could be anyone—including a voter or an EA trustee, located
close to or far away from their target. The adversary might be covert or overt.
The adversary’s goal might include any or all of the following: tamper with the
tally, influence a voter’s ballot choice through coercion, learn how a voter voted,
or disrupt or discredit an election. The adversary can engage in coercion at any
time, including before voter registration.

We assume a secure ACS that protects against traffic analysis. Examples in-
clude TOR with hidden services [32], I2P [17], xx network [36], and Oxen [26].

5

We further assume that the adversary cannot defeat standard cryptographic
functions and protocols, including encryption, digital signatures, cryptographic
hashing, pseudorandom number generation, and ZKPs. We assume an untap-
pable channel between the voter and their hedgehog(s), as explained in Sect. 2.

3.2 Problem Specification
Our main requirement is a coercion-resistant remote voting system that achieves
a level of security as close as possible to a precinct based in-person voter verifiable
secret paper ballot system. The system must maximize the ability to prevent or
remediate serious failures by eliminating undetectable attacks, prevent scalable
“wholesale” attacks, and make “retail” attacks as difficult as possible. The key
requirements, specific to our context, are coercion resistance, malware resistance,
and availability.

Coercion resistance. An adversary cannot be convinced that the voter’s bal-
lot is counted as it was coerced. This property is related to ballot secrecy but
we assume that the adversary can watch the voter vote or vote for them. The
adversary, however, cannot be sure how that vote is counted, so they have no
incentive to threaten or pay the voter to vote a certain way. While rarely a sig-
nificant issue in polling place elections, this problem is much more important in
uncontrolled environments such as absentee voting or Internet voting.

Malware resistance. Undetected changes in the software or hardware must
not, for all time, yield undetectable changes in the result. This property is similar
to software independence but with the caveat that before or after the election
a version of the software exists without the undetected change. In other words,
the adversary does not, for all time, control everything read or written to all
devices used by the voter for voting.

Availability. The system must not have single points of failure. It should
be resistant to denial of service attacks, and no single entity should be able to
prevent completion of the election.

In practice, the system must also meet the requirements explained by Park et
al. [27]. Specifically, the system must have voter verifiable ballots, contestability,
and auditing, in addition to the specific requirements mentioned above.

3.3 System Architecture
We describe VoteXX in terms of the following entities and elements. There are
n voters v1, v2, . . . , vn who interact with a publicly readable BB, which is a
distributed ledger such as a blockchain. The writing interactions take place via an
ACS. The ACS disassociates the device, physical location, and other associated
metadata by all clients posting to the BB, protecting the metadata of voters and
hedgehogs as well as sensitive election authority equipment. Read operations can
take place through the ACS or via a direct interaction with the BB. Each voter
may have one or more trusted hedgehog(s). Each hedgehog interacts with the
BB via the ACS. The EA comprises three entities, each under the control of a
set of trustees: a Registration Authority (RA), a Voting Authority (VA), and a
Tallying Authority (TA). The EA can read and write to the BB via the ACS.

6

The system includes a set of auditors who can read from the BB and verify that
the operations performed by the EA and via the ACS are correct.

4 Protocols

Protocol Boxes 1–3 explain the four main stages of the VoteXX protocols: reg-
istration, voting, and tallying (including nullification).

The VoteXX protocol assumes a number of cryptographic primitives that
are common in the voting literature. All operations are performed in the same
elliptic curve group, where the decisional Diffie-Hellman (DDH) problem (and
by extension, the discrete logarithm problem) is hard. Digital signatures are
performed with the Schnorr signature scheme. Encryption is performed with
ElGamal [10], which can be augmented with distributed key generation (DKG)
and threshold decryption (for m out of n key holders [28]). We use standard
Σ−Protocols to prove knowledge of discrete logarithms (Schnorr [29]), knowl-
edge of Diffie-Hellman tuples (Chaum-Pedersen [6]), which also corresponds to
ElGamal re-randomizations and decryptions, and knowledge of representations
(Okamoto [25]). We also use techniques to allow the trustees to compute jointly
and verifiably (i.e., produce Σ−Protocol proofs), and to compute privately, on
ElGamal ciphertexts the following: (i) a random shuffle of ciphertexts (Verifi-
catum), and (ii) the evaluation of an exclusive-or (xor) operation based on its
logic lookup table (mix and match [18]).

Protocol 1 describes registration. Registration can be re-opened by re-running
set-up. Once a voter key is registered, it can be used in later registration pe-
riods. Voting performs a straightforward signature, using a registered key (see
Protocol 2). At the end of registration, voter keys are unlinked from their iden-
tity. Until the election closes, votes are encrypted to preserve the secrecy of the
tally, and ballots are submitted through the ACS to unlink them from the voter
network and communication metadata.

The tallying process (Protocol 3) includes our novel nullification technique.
Consider a list of public keys that voted YES and assume the hedgehog wants
to nullify one of them. It cannot point out which key it wants to nullify or the
coercer will know the voter is working with (or is personally acting as) a hedgehog
to intervene. So the hedgehog must hide its flag (J1K) in a set of false flags (J0K)
for each YES key in the tally. We could allow the hedgehog to choose a fixed-
sized subset of β keys at random to serve as an anonymity set, which improves
performance but sacrifices full anonymity (cf. [7]). For simplicity, the protocol
boxes do not explain that, for nullification, we use exponential ElGamal [10]
instead of standard ElGamal used in registration and voting (under the same
election master key).

If a hedgehog flags a key with (J1K), it must know the associated private key;
otherwise, any hedgehog could nullify any vote. However, if it submits a false flag
(J0K), it does not need to know the associated key. Anyone can serve as a dummy
hedgehog by submitting a full set of false flags. To enforce these constraints, the
hedgehog must construct an Σ−Protocol for each flag.

7

Registration is an in-person ceremony between the voter, using a voting client
device, and an officer for the EA. At completion, the voter registers two public
keys

〈
pkyes, pkno

〉
, which are not learned by the EA officer and will be used to

vote YES and NO, respectively. The keys are for a digital signature. They are
based on a passphrase that can be regenerated from any voting client. The EA
additionally does not learn the passphrase but has high assurance through the
protocol the human voter knows the passphrase.

Registration Set-up. Registration uses a trapdoor commitment scheme. The
commitment aspect allows the voter to present her passphrase in a hidden form
to the EA and answer queries about specific characters within it. The trapdoor
is revealed after registration closes and allows each voter to convert the format of
their commitments into the format of a public key.

1. The generator g0 is a parameter of the election.
2. The EA computes a generator g1 as follows: each trustee T, T ′, T ′′, . . . privately

chooses one random value a1, reveals ga1
0 , and proves knowledge of a1 with a

Schnorr Σ−Protocol. Then g1 = g
(a1+a′

2+a′′
3 +...)

0 .
3. This process is repeated, with new random ai values, to complete a set of N

generators: base← ⟨g0, g1, g2, . . . , gN−1⟩. The same base is used for all voters
in a registration period.

4. Call the set of all a values (split across the trustees): trapdoor.

Registration.

1. Each voter generates two N -character passphrases (for YES and NO). Steps 2-
4 describe the process for the first passphrase and are repeated for the second.

2. The voting client parses the passphrase as a sequence of Base64 characters
⟨c0, c1, c2, . . . , cN ⟩ and computes its deterministic commitment using base:
passCommit←

〈
gc00 · g

c1
1 · g

c2
2 · . . . · g

cN−1

N−1

〉
.

3. The voting client sends passCommit to the EA.
4. The EA officer issues a challenge like: “Reveal Character 4.” The voter re-

sponds “F.” The EA client computes disclosedChar ← (passCommit/gF4). The
voting client proves knowledge of a representation of disclosedChar using a
Σ−Protocol. This step is repeated to build confidence that the voter knows
the passphrase, but bounded in repetitions to protect the passphrase.

5. The EA client posts
〈
VoterID, JpassCommityesK, JpassCommitnoK

〉
to the BB,

where JpassCommitK is an encryption of passCommit under the EA’s thresh-
old encryption scheme. Finally the EA client proves to the voter client the
correctness of the encryptions using the Chaum-Pedersen Σ−Protocol.

Registration Finalization.

1. After the registration period, the EA takes the list of〈
VoterID, JpassCommityesK, JpassCommitnoK

〉
entries, removes the VoterID

component, and verifiably shuffles, threshold-decrypts, and posts〈
passCommityes, passCommitno

〉
for each (now anonymous) voter.

2. Each trustee T, T ′, T ′′, . . . reveals their values producing trapdoor.
3. Each voter uses trapdoor to reformat their two passCommit values into key

pairs ⟨sk, pk⟩ such that pk = passCommit = gsk0 as follows. Consider generator
gi and let αi = ai + a′

i + With this notation, sk = c0 +α1 · c1 +α2 · c2
4. Given that

〈
passCommityes, passCommitno

〉
=

〈
pkyes, pkno

〉
, the EA holds an

anonymized list (Roster) of
〈
pkyes, pkno

〉
keys for each registered voter.

Protocol 1: Registration Protocol.

8

Voting. Each voter completes voting online. At completion, each voter will have
submitted their ballot using a passphrase from registration.

1. The nonce nonce is a parameter of the election.
2. To mark a ballot for YES, the voter uses their YES passphrase to generate

skyes and uses this key to sign n0: σyes ← Sign(nonce). Corresponding values
are used to vote NO.

3. The voter uses the EA’s threshold encryption scheme to compute ballot ←
⟨JpkyesK, JσyesK, πppk⟩, where each group element of σ is individually encrypted
and πppk is a proof of plaintext knowledge using the Chaum-Pedersen
Σ−Protocol.

4. The voter submits ballot over the ACS to the BB. The EA marks it as invalid
if it is an exact duplicate or if the proofs are invalid.

Protocol 2: Voting Protocol.

The Σ−Protocol takes a voter’s public key pk and makes a disjunctive proof
that either Case 1 OR Case 2 is true: In Case 1, the hedgehog proves (flag = J0K).
For exponential ElGamal, assume ⟨c1, c2⟩ = Enc(m) = ⟨gr, gmyr⟩ for genera-
tor g, public key y, and message m. A proof it encrypts m̂ is equivalent to
proving

〈
g, c1, y, c2m̂

−1
〉

is a DDH tuple, which can be done with the Chaum-
Pedersen Σ−Protocol. Call this subproof A. In Σ−Protocol format, its transcript
is ⟨aA, eA, zA⟩.

In Case 2, the hedgehog proves a conjunctive statement: (flag = J1K) and it
knows sk, which corresponds to pk for the associated voter’s public key. Call the
subproof that (flag = J1K) B. It is implemented the same as subproof A with
transcript ⟨aB , eB , zB⟩. Call the proof of knowledge of sk subproof C, which can
be implemented with a Σ−Protocol due to Schnorr: ⟨aC , eC , zC⟩. To summarize,
the hedgehog proves: Π := [A OR (B AND C)].

It is well known that Σ−Protocols can be stacked through conjunction and
disjunction [9,14]. Further, the resulting proof can be made non-interactive (typi-
cally in the random oracle model with the Fiat-Shamir heuristic [13], in its strong
form [4], but other heuristics exist [15]). Specifically, the prover generates a sin-
gle challenge ê for Π. To handle the conjunction within Case 2, eB = eC ; for
the disjunction across the cases, ê = eA + eB . In Case 1, the prover computes
⟨aA, eA, zA⟩ and simulates ⟨aB , eB , zB⟩ and ⟨aC , eB , zC⟩. In Case 2, the prover
simulates ⟨aA, eA, zA⟩ and computes ⟨aB , eB , zB⟩ and ⟨aC , eB , zC⟩.

Once a set of flags (each real or false with its own proof Π) is computed and
submitted by a hedgehog, Protocol 3 simplifies the description by having the EA
wait to perform Steps 1–2 after the nullification period. In practice, it should not
wait—it is quadratic work (number of hedgehogs times number of voters) and
subject to “board flooding” attacks [21]. It must process the nullifications as they
arrive (“concurrent authorization” [12]). Doing so is possible. When a new set of
flags arrives, each proof is checked and the xor between the submitted flag and
the accumulation of previous flags is computed (both are parallelizable for each

9

Provisional Tally. After the voting period is over, the EA produces a verifiable
provisional tally.

1. The EA takes the list of ⟨JpkK, JσK⟩, then verifiably shuffles and threshold-
decrypts them: ⟨pk, σ⟩.

2. For each ballot, the ballot is marked invalid if σ does not verify under its
corresponding pk.

3. For each valid signature, pk is matched to its entry on the Roster. The EA
determines if it is a YES or NO key, and counts the vote only if it is the
only ballot cast that corresponds to that roster entry. (Since ballots are not
shuffled, other policies are feasible such as counting the most recent vote.)

Nullification. The goal of nullification is to allow voters to modify their cast
ballots, particularly in the case of coercion. Unlike other protocols, voters can enlist
the help of others parties, called hedgehogs. The nullification period runs after the
provisional tallying. If the provisional tally contains pkno, it can be nullified using
skyes (the “opposite” key). In other words, casting a YES and nullifying a NO vote
use the same key, as these two actions are aligned in their intention.

1. At any convenient time, before or after voting, the voter covertly communi-
cates with a hedgehog to develop a coercion-resistant strategy. Assume the
following strategy: the voter wants to vote YES and reveals skyes to the hedge-
hog, along with

〈
pkyes, pkno

〉
. They request the hedgehog engage in nullification

if pkno is in the provisional tally.
2. Using the Roster and set of valid signatures from the provisional tally, the EA

reformats the election data into two lists. The first list establishes, in arbitrary
order, the set of pkno keys from voters who cast valid votes for YES (call it
yesVotes). The second list contains pkyes from voters who voted NO.

3. For example, assume YES received six votes in the provisional tally. yesVotes
consists of six pkno keys. If the hedgehog wants to nullify the fourth key, it
prepares a list of encrypted “flags” marking the ballot it wants to nullify:
⟨J0K, J0K, J0K, J1K, J0K, J0K⟩.

4. The first encrypted flag corresponds to the first pkno in yesVotes. The hedgehog
adds a proof to this list using the nullification Σ−Protocol. Concisely, the proof
statement is: [(this flag is an encryption of 0) or (this flag is an encryption of
1 and I know skno corresponding to this pkno)].

Final Tally. After the nullification period is over, the EA produces a verifiable
final tally.

1. The EA takes all the encrypted flags for the first pkno key in yesVotes and
computes its xor under encryption using the mix and match SFE protocol [18].
It repeats this process for the remaining pkno keys.

2. The EA takes the list of encrypted xored flags, sums them under encryption,
and verifiabily threshold-decrypts the result. The EA subtracts this value from
the number of YES votes in the provisional tally to produce the final tally for
YES votes.

3. The EA repeats Steps 1-2 for each pkyes key in noVotes.

Protocol 3: Tallying Protocol (including nullification).

10

flag). Thus, when nullification closes, the only remaining task is to threshold
decrypt the accumulation of flags, which is linear in number of votes.

5 Design, Client Interfaces, and Implementation

Design elements. The design of VoteXX differs from that of other election sys-
tems in that the BB is at the center. The BB receives all posts through an ACS;
all other communication is directly peer-to-peer, or in person. The BB, via the
ACS, is part of a public, pre-existing decentralized infrastructure. The BB uses
a multicast feature of the ACS, allowing all BB instances, auditors, and other
observers to record the same data sent through the network at the same time.

Fig. 1. Voter interface. The voting client generates ballots when the voter enters the
proper YES or NO passphrase (left), optionally both phrases. Any client can nullify
(middle), and users can scan their ballot QR code (right) to any other voting client
instead of using their passphrase.

Client interfaces. The voter clients operate like a calculator, without state or
persistent storage. The voter can enter their YES or NO passphrase on another
device at any time to regenerate their ballot, and the client will verify that the
ballot is properly posted to the BB. Any voter can be a hedgehog for themselves
or other voters.

The voter and hedgehog clients are integrated into the same mobile phone
app as shown in Fig. 1. Voters and hedgehogs can also send and receive ballot
secrets directly between each other using their ACS identities.

The EA client starts an election by posting a signed election parameters file.
Any client can read and write messages to the BB. Messages are ignored unless

11

they are signed by eligible clients. Auditor clients read data posted directly from
the ACS to the BB; they verify signatures and validate posted data.

Implementation. We implemented the EA and auditor binaries in Java and
Golang as ACS clients that interact with the BB. Our implementation uses the
MODP-4096 [20] DH group for tallying and nullification. We use the Bouncy-
Castle [23] library and native Golang cryptography library for all cryptographic
operations.

The election parameters file establishes a public 256-bit ACS identity for all
observers. All clients use a file-based input/output for each operation, where
each file corresponds to a specific uniform resource locator (URL) with the file
content in a standardized JSON format. Each BB instance is a listener to the
ACS identity, storing the data to disk using the same URL structure. Anyone
can run a BB instance that provides a REST-like API to access the files through
the ACS, and they can host access to these files using separate HTTPS or SFTP
servers.

6 Discussion

We now discuss our major design decisions, nullification options (cancel, cancel-
toggle, and flip), analysis, extensions, and open problems.

6.1 Major Design Decisions
Toward our goal of addressing improper influence and supporting online verifi-
able elections, we made three major design decisions: (1) Nullification achieves
the theoretically optimal coercion resistance, and using hedgehogs depends on a
more realistic assumption than that assumed in previous work. (2) Our decen-
tralized architecture provides availability and malware resistance. (3) In-person
registration involving passphrases enhances voter authentication and provides
key functionality for malware resistance.

Nullification and hedgehogs. Nullification allows the voter to share a passphrase
anytime after they conceive of it. In-person registrations ensures the voter knows
their passphrases, providing ample opportunity even for captive voters (e.g., a
spouse or child) to signal a hedgehog. Because each passphrase can nullify a
ballot only in one direction (the NO key can only vote NO or nullify YES; the
YES key can only vote YES or nullify NO), voter intent matters and a signal to
coordinate with a hedgehog can be optional. For example, a candidate who is a
hedgehog might always nullify a ballot cast against them if possible.

Decentralized architecture. Routing all audit data through the ACS creates a
special challenge to the adversary not present in traditional election systems: Any
attack on the infrastructure must disable a much larger system, where there is
an independent financial incentive for it to remain online. The BB, decentralized
through the ACS, is not vulnerable to denial-of-service. Flooding the BB with
data [21] is limited as adversaries must pay for ACS bandwidth. Because all BB
data are public and we use known E2E-voting constructions, the system meets
the requirements for voter verifiable ballots, contestability, and auditability.

12

In-Person registration. Our registration design roots trust into passphrases
known to the voter and written on physical paper attached to a specific per-
son. This design provides a critical feature for the system’s malware resistance:
passphrases make it possible to detect and prove misbehavior by the software
because all data posted to the BB can be regenerated with the passphrases on
any device.

Undetectable wholesale attacks are stacked asymmetrically against an ad-
versary: they must deploy malicious software across all devices controlled by
checking with a passphrase. The deployment must go undetected forever—or,
if they do not care about loss of confidence from a provably improper election
outcome, at least until the election completes. Therefore, the adversary must
assume a level of sophistication against that of the best nation state actors if the
adversary is to remain undetected for a useful period of time. These decisions
allow VoteXX to prevent undetectable wholesale attacks at scale and provide
detection and mitigation against retail attacks.

Passphrases also raise potential challenges: they are a target for malware,
and the system must be prepared to deal with voters who forget theirs.

6.2 Cancel, Cancel-Toggle, or Flip
Our design supports a variety of options for implementing the semantics of nul-
lification, including what we call “cancel,” “cancel-toggle,” or “flip.” Consider a
vote that might have been nullified by one or more entities. Assume that this
vote selects from one of k ballot choices numbered 0, 1, . . . , k − 1 (see multi-
candidates in Sect. 6.5). With cancel, the vote is cancelled if and only if at least
one entity nullified it (and this can be generalized to at least t entities for some
threshold t). With cancel-toggle, the vote is cancelled if and only if an odd num-
ber of entities nullified it. With flip, the vote becomes x+ y mod k, where x is
the ballot choice of the vote, and y is the number of times the vote was nullified.

Each of these options can be implemented using different algebraic operations
during Step 1 of the third phase (Final Tally) of Protocol 3: respectively, AND
for cancel (realized with a homomorphic addition of the encrypted flags for each
ballot followed by a plaintext equality test with J0K), XOR for cancel-toggle (as
described, using mix and match [18]), and ADDITION modulo k for flip (realized
with mix and match. The final summation in Step 2 is replaced with a verifiable
shuffle and threshold decryption of the flag set for each key).

Intuitively, cancel gives the voter the ability to cancel the vote, whereas
flip gives the voter the ability to randomize the vote. Cancel-toggle has the
undesirable property that the voter cannot guarantee to cancel or randomize
the vote. For example, in an election selecting Alice or Bob, suppose coercer
Charlie forces voter Victor to vote for Bob in his presence. Secretly, Charlie
randomly chooses whether to nullify. Regardless of whether Victor nullifies, with
cancel-toggle the result will be the same: there is 50% chance that the vote
is nullified, and there is a 50% chance that the vote will remain for Bob. We
recommend not using cancel-toggle.

A useful application of flip arises for a common form of low-intensity coercion.
Suppose during remote voting at home, a coercer tells their spouse to vote for

13

Alice and watches them comply, but the coercer does not collect the spouse’s
keys. Without any advance planning, the spouse can later flip their vote to Bob
without the coercer knowing.

6.3 Security Note
A limitation of our work is that we do not have formal statements and proofs
of the privacy and security properties of VoteXX, which we consider beyond the
scope of this paper. These properties stem, in part, from VoteXX’s use of an ACS
and ZKPs. For example, the EA does not know which public key corresponds
to which voter. No party can learn the passphrase from the values disclosed
privately and publicly by the voter. We are working on formal statements of the
privacy and security properties of VoteXX and a UC proof.

6.4 Performance Analysis
We analyze the running time of VoteXX for elections with T trustees, V voters,
and H hedgehogs. If a passphrase is ℓ characters long with α possible characters,
registration setup takes Θ(ℓαT) work (comprised of modular exponentiations
and Σ−Protocols). The proof size and verification time for the auditor is also
Θ(ℓαT). Example parameters might be α = 64 characters of length ℓ = 20 and
T = 10 trustees. The shuffle proof dominates registration finalization, generally
taking Θ(V T log V). Each vote has a constant amount of signatures, encryp-
tions, and Σ−Protocols for the voter. Proof size and verification time for the
auditor is Θ(V). The provisional tally consists of another shuffle, Θ(V T log V),
and decryption (subsumed in the shuffle), with the proof size and verification
time of the same order for the auditor.

Nullification is an involved protocol. As mentioned in Sect. 4, to avoid a
quadratic bottleneck during the final tally, it is essential to process hedge-
hog flags as they arrive. Each hedgehog performs Θ(V) work (encryptions and
Σ−Protocols) that an auditor must fetch and validate (space and time of Θ(V)).
For each of the V flags from one hedgehog, the trustees can precompute a logic
gate (two-input gates are effectively constant time). Applying the gate to the
inputs is Θ(T) (plaintext equality tests and Σ−Protocols). In total, nullification
is Θ(HV T) work for the EA and auditors, with same order proof size on the BB.
The final tally is fast: Θ(V T) work (consisting of decryption and Σ−Protocols)
for the trustees and auditors, with same order proof size.

6.5 Extensions
We briefly describe several possible extensions of VoteXX.

Multiple candidates. VoteXX can be easily extended to support an election
with multiple candidates. For example, for a k-candidate race, the voter can
register k key pairs and then vote using the desired key. Without any major
changes, nullification still operates as before. For example, to perform a flip, the
system can use an addition modulo k to determine what flip to apply to the
initially cast vote. Since the scalability of the nullification protocol is linear in

14

the number of voters and hedgehogs, introducing multiple candidates does not
affect the overall performance of the nullification process.

Voting in person or by mail. To support the existing voting infrastructure,
VoteXX can allow for a setting where the voting is accomplished by mail or in
precincts using paper ballots. This capability can be achieved by incorporating
a code-voting protocol [37].

Malware. To enhance protection against malware, where the voting device is
running malicious software and can alter the operations performed by the voter,
VoteXX allows for a two-phase voting process. In Phase 1, the user submits a
vote or a vote commitment. In Phase 2, using a different device, the voter checks
if the submission is correctly posted on the BB. Optionally, this extension can
include an additional set of keys, where the user submits a payload signed with
the additional keys and thereby “ locks in” their submission.

Roster changes. If detected early in the election, it is possible to contest
and remove a compromised passphrase. Providing proper documentation, the
affected voter would rerun the in-person registration process.

Online registration. For lower-security elections, it is possible to replace the
in-person registration with an online registration that follows appropriate iden-
tification mechanisms or uses an identity verification service [35].

6.6 Open Problems and Future work
Open problems include refining a formal definition of coercion resistance.

It might be possible to devise a way for voters to validate correct construction
of a voter’s ballot posted in the public record, without revealing how the voter
voted. For example, it may be possible to do so by revealing part of the voter’s
passphrase, enabling a kind of ZKP.

It would be interesting to explore how the number of nullifications might
provide a measure of coercion. This measure might even be used to reject an
election outcome, if there were too many nullifications. A danger is that such a
mechanism might be abused to discredit a valid outcome.

The next steps for VoteXX are a formal security proof, formal protocol veri-
fication, and a formally verified implementation of key system elements. We also
plan to conduct a pilot election and user study to assess the overall usability.
Results can help us improve the system and facilitate widespread adoption.

To enhance the availability of VoteXX, we plan to decentralize the protocol
further, enabling a subset of the EA to perform certain election steps.

7 Conclusion

We have presented a new, practical, and flexible way to remove improper influ-
ence from election systems, through the use of nullification supported by voter
associates whom we call hedgehogs. In comparison with previous approaches,
our solution makes fewer assumptions and protects against stronger adversaries.
By separating our mechanism for mitigating improper influence from the mech-
anisms of ballot marking and collection, our technique works with a wide range

15

of voting systems, including precinct voting with paper ballots, voting by mail,
and Internet voting. For example, our mechanism works harmoniously with tech-
niques for mitigating malware attacks, including allowing voters to check across
multiple systems and devices. Also, our nullification mechanism can be used in
addition to other mechanisms for mitigating improper influence.

Currently, election systems without voting booths are vulnerable to potential
improper influence attacks. For example, a nation state, terrorist organization,
billionaire, or anonymous hackers might offer significant amounts of money to
vote for certain candidates. It could likely be impossible to know the extent to
which such attacks succeeded. Such attacks would discredit the election, and re-
running the election with the same technology would not resolve the issue. Our
paper offers a solution to this threat that achieves the theoretically best possible
result. Having demonstrated that coercion resistance is possible, even in Internet
voting, democratic societies should insist that, as a matter of due diligence, all
voting systems should provide coercion resistance. Our work protects voting
beyond the booth, and such voting is an essential enabler for the advance of
democracy.

References

1. Adida, B.: Helios: Web-Based open-audit voting. In: USENIX Security Symposium.
pp. 335–348 (2008)

2. Araujo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for Internet voting. Toward Trustworthy Elections LNCS 6000 (2010)

3. Araujo, R., Rajeb, N.B., Robbana, R., Traoré, J., Yousfi, S.: Towards practical and
secure coercion-resistant electronic elections. In: CANS (2010)

4. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the
Fiat-Shamir heuristic and applications to Helios. In: ASIACRYPT (2012)

5. Chaum, D.: Random-Sample Voting (2012), online
6. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO (1992)
7. Clark, J., Hengartner, U.: Selections: Internet voting with over-the-shoulder

coercion-resistance. In: Financial Cryptography (2011)
8. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.

In: IEEE Symposium on Security and Privacy. pp. 354–368 (2008)
9. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: CRYPTO (1994)
10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-

authority election scheme. In: EUROCRYPT (1997)
11. Delaune, S., Kremer, S., Ryan, M.: Coercion-Resistance and receipt-freeness

in electronic voting. In: 19th IEEE Computer Security Foundations Workshop
(CSFW’06). pp. 12+. IEEE (2006)

12. Essex, A., Clark, J., Hengartner, U.: Cobra: Toward concurrent ballot authorization
for Internet voting. In: EVT/WOTE (2012)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO. pp. 186–194 (1986)

14. Fiat, A., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
ACM STOC (1990)

15. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. Springer (2010)

16

16. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: EUROCRYPT (2000)

17. I2P: Invisible Internet project. https://www.geti2p.net, accessed on 01-05-2022
18. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-

texts. In: ASIACRYPT (2000)
19. Juels, A., Catalano, D., Jacobsson, M.: Coercion-Resistant electronic elections. In:

ACM WPES (2005)
20. Kivinen, T., Kojo, M.: More modular exponential (modp) Diffie-Hellman groups

for Internet key exchange (IKE). RFC 3526, IETF (2003)
21. Koenig, R., Haenni, R., Fischli, S.: Preventing board flooding attacks in coercion-

resistant electronic voting schemes. In: SEC (2011)
22. Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and relationship

to verifiability. In: ACM CCS (2010)
23. Legion of the Bouncy Castle: Bouncy Castle crypto APIs, https://www.

bouncycastle.org/java.html, accessed: 2022-05-05
24. Lueks, W., Querejeta-Azurmendi, I., Troncoso, C.: Voteagain: A scalable coercion-

resistant voting system. In: USENIX Security (2020)
25. Okamoto, T.: Provably secure and practical identification schemes and correspond-

ing signature schemes. In: CRYPTO (1992)
26. Oxen: Privacy made simple. https://www.oxen.io, accessed on 01-05-2022
27. Park, S., Specter, M., Narula, N., Rivest, R.L.: Going from bad to worse: From

Internet voting to blockchain voting (2020), online
28. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: EURO-

CRYPT (1991)
29. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptog-

raphy 4, 161–174 (1991)
30. Smyth, B.: Surveying definitions of coercion resistance. Cryptology ePrint Archive,

Report 2019/822 (2019)
31. Spycher, O., Haenni, R., Dubuis, E.: Coercion-Resistant hybrid voting systems. In:

EVOTE (2010)
32. TOR: The TOR project. https://www.torproject.org, accessed on 01-05-2022
33. Volkamer, M., Grimm, R.: Multiple casts in online voting: Analyzing chances. In:

EVOTE (2006)
34. Wen, R., Buckland, R.: Masked ballot voting for receipt-free online elections. In:

VOTE-ID (2009)
35. Wikipedia: Identity verification service, https://en.wikipedia.org/wiki/

Identity_verification_service, accessed: 2022-05-07
36. xx.network: A quantum leap in privacy. https://www.xx.network, accessed on

01-05-2022
37. Zagórski, F., Carback, R., Chaum, D., Clark, J., Essex, A., Vora, P.L.: Remotegrity:

Design and use of an end-to-end verifiable remote voting system. In: ACNS (2013)

https://www.geti2p.net
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://www.oxen.io
https://www.torproject.org
https://en.wikipedia.org/wiki/Identity_verification_service
https://en.wikipedia.org/wiki/Identity_verification_service
https://www.xx.network

	VoteXX: A Solution to Improper Influence in Voter-Verifiable Elections

